Microtubule Affinity Regulating Kinase Activity in Living Neurons Was Examined by a Genetically Encoded Fluorescence Resonance Energy Transfer/Fluorescence Lifetime Imaging-based Biosensor

نویسندگان

  • Thomas Timm
  • Jens Peter von Kries
  • Xiaoyu Li
  • Hans Zempel
  • Eckhard Mandelkow
  • Eva-Maria Mandelkow
چکیده

Thomas Timm, Jens Peter von Kries, Xiaoyu Li, Hans Zempel, Eckhard Mandelkow, and Eva-Maria Mandelkow From the Max-Planck-Unit for Structural Molecular Biology, c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany, FMP, Forschungsinstitut fuer Molekulare Pharmakologie, Robert-Roessle-Strasse 10, 13125 Berlin, Germany, and the DZNE (German Center for Neurodegenerative Diseases) and CAESAR (Center of Advanced European Studies and Research) , Ludwig-Erhard-Allee 2, 53175 Bonn, Germany

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microtubule affinity regulating kinase activity in living neurons was examined by a genetically encoded fluorescence resonance energy transfer/fluorescence lifetime imaging-based biosensor: inhibitors with therapeutic potential.

Protein kinases of the microtubule affinity regulating kinase (MARK)/Par-1 family play important roles in the establishment of cellular polarity, cell cycle control, and intracellular signal transduction. Disturbance of their function is linked to cancer and brain diseases, e.g. lissencephaly and Alzheimer disease. To understand the biological role of MARK family kinases, we searched for specif...

متن کامل

Monitoring Biosensor Activity in Living Cells with Fluorescence Lifetime Imaging Microscopy

Live-cell microscopy is now routinely used to monitor the activities of the genetically encoded biosensor proteins that are designed to directly measure specific cell signaling events inside cells, tissues, or organisms. Most fluorescent biosensor proteins rely on Förster resonance energy transfer (FRET) to report conformational changes in the protein that occur in response to signaling events,...

متن کامل

Aurora B Inhibits MCAK Activity through a Phosphoconformational Switch that Reduces Microtubule Association

BACKGROUND Proper spindle assembly and chromosome segregation rely on precise microtubule dynamics, which are governed in part by the kinesin-13 MCAK. MCAK microtubule depolymerization activity is inhibited by Aurora B-dependent phosphorylation, but the mechanism of this inhibition is not understood. RESULTS Here, we develop the first Förster resonance energy transfer (FRET)-based biosensor f...

متن کامل

Real-time imaging elucidates the role of H2O2 in regulating kinetics of epidermal growth factor-induced and Src-mediated tyrosine phosphorylation signaling.

Reversible oxidation is emerging as an important regulatory mechanism in protein tyrosine phosphorylation. Generation of hydrogen peroxide (H(2)O(2)), upon growth factor stimulation, is hypothesized to inhibit activity of protein tyrosine phosphatases (PTPs). This ensures that protein tyrosine kinases can elevate the steady-state level of protein tyrosine phosphorylation, which then allows prop...

متن کامل

The Spatiotemporal Pattern of Src Activation at Lipid Rafts Revealed by Diffusion-Corrected FRET Imaging

Genetically encoded biosensors based on fluorescence resonance energy transfer (FRET) have been widely applied to visualize the molecular activity in live cells with high spatiotemporal resolution. However, the rapid diffusion of biosensor proteins hinders a precise reconstruction of the actual molecular activation map. Based on fluorescence recovery after photobleaching (FRAP) experiments, we ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011